
Ears Wide Open Documentation
Release proto-0.1.0

Matthieu Berjon

January 12, 2017

Contents

1 Developer information 3
1.1 Communication . 3
1.2 Getting started . 3

2 Building Ears Wide Open 5
2.1 Overview for setting up a build environment . 5
2.2 Build the system . 5
2.3 Library versions . 6
2.4 Debugging . 6

3 Coding style guideline 7
3.1 Indentation . 7
3.2 Breaking long lines and strings . 8
3.3 Placing Braces and Spaces . 8
3.4 Naming . 10
3.5 Typedefs . 11
3.6 Functions . 12
3.7 Centralized exiting of functions . 12
3.8 Commenting . 13
3.9 You’ve made a mess of it . 14
3.10 Kconfig configuration files . 15
3.11 Data structures . 15
3.12 Macros, Enums and RTL . 16
3.13 Printing kernel messages . 17
3.14 Allocating memory . 17
3.15 The inline disease . 18
3.16 Function return values and names . 18
3.17 Don’t re-invent the kernel macros . 18
3.18 Editor modelines and other cruft . 19
3.19 Inline assembly . 19
3.20 Conditional Compilation . 20
3.21 Appendix I: References . 20

4 Glossary 21

5 Indices and tables 23

i

ii

Ears Wide Open Documentation, Release proto-0.1.0

Contents:

Contents 1

Ears Wide Open Documentation, Release proto-0.1.0

2 Contents

CHAPTER 1

Developer information

Version of this manual: proto-0.1.0.

Welcome to the developer documentation. You will find here I hope most of the information to contribute to the code
without any issue. Nevertheless is you have any questions, there is several channels to ask your questions. Please, see
Communication section.

1.1 Communication

Most communication happens on the mailing list and IRC channel. See the contact page for more information.

No spamming or flaming is allowed on the lists or IRC channels. Please, stay on topic in the lists and follow the net
etiquette. Also, do not send html message on the mailing lists.

If necessary, regular online meetings can be organised if enough people shows an interest. Contact us to let us know.

1.2 Getting started

1.2.1 Building Ears Wide Open

See Building Ears Wide Open chapter.

1.2.2 Decisions

Because the project is very tiny at the moment, the decisions are taken by the main contributors and/or users. This
could evolve with the project evolution.

1.2.3 Bug fixing

One of the easiest way to get involved in the project is by fixing bugs. Bug-fixing let you focus on a small part of the
project rather than trying to understand it all at once. There is a list of current bugs on ‘Github issues‘_. So pick an
area of interest and start fixing! Once you have got it, ‘make a patch and submit it‘_

3

https://earswideopen.net/support#contact

Ears Wide Open Documentation, Release proto-0.1.0

1.2.4 Navigating the code

Have a look at the file structure and code layout diagram.

Directory Use
/documentation/ Document generation (sphinx), man page
/sources/ Main source code directory for code maintained by Ears Wide Open developers.
/tools/ Different scripts or programs useful for the development and configuration of the project.
README.md Readme file of the project. If you need anything, it’s usually a good place where to start.
LICENSE Complete license description used in the project.

1.2.5 Coding guideline

The coding guideline chosen corresponds to the Linux kernel. For the specifics, please refer to the Coding style
guideline.

1.2.6 Development process

• Getting started

– building [DONE]

– diving into the code (explanation of the tree in a dedicated page) [WIP]

– coding guideline (develop all the code guideline in a dedicated page) [DONE]

– debugging

– development process

* atlassian git flow (+ sign-off) (update the README accordingly

* pick up an issue

* how to submit a patch through email or pull-request

– technical documentation - algo design, - optimisation, - complexity, - C-fixed, - ...

• contributions

• autodoc

4 Chapter 1. Developer information

CHAPTER 2

Building Ears Wide Open

Operating system specific instructions for creating a build from scratch.

• On GNU/Linux

• On MacOs

• On Windows

• On *BSD

2.1 Overview for setting up a build environment

This section is only to list main steps you have to follow on all platforms. This part is intended for anyone unfamiliar
with the process of compiling C softwares from sources.

• install dependencies (git, GCC),

• checkout Ears Wide Open’s source code from version control,

• use Make to compile the source code into an executable.

Todo

• Create a /lib folder to add the necessary libraries in static and compile against these this would maybe avoid to
download or install too many things for the person willing to contribute and avoid as well version issues (except
the compiler of course)

Optionnaly you can:

• install a text editor or IDE

2.2 Build the system

Ears Wide Open uses the autotools chain to build its system. The first time you want to build the system you will need
to run three main commands from the root of the project:

$./autogen.sh $./configure $ make

At the moment the official release build the software against GCC 5.3.0.

It’ possible to run the test suite using the following command:

5

Ears Wide Open Documentation, Release proto-0.1.0

$ make check

In order to work, the framework cmocka needs to be installed on the host machine.

Todo

• Add to the main Makefile a possibility to compile the documentation

2.3 Library versions

Here you’ll find a list of official libraries used in the project. We’ll try to use at maximum official supported version
(i.e those used by official build environments).

Library Version
Portaudio V19

2.4 Debugging

If you want to use several debugging tools such as GDB or Valgrind, you can use the following command with libtool

$ libtool –mode=execute gdb src/ewo

or $ libtool –mode=execute valgrind src/ewo

It’s eventually possible to use Valgrind (or GDB?) on the test suite. The command would be then:

$ make check TESTS_ENVIRONMENT=valgrind

It’s a bit tedious to use this command all the time and have some drawbacks but there is a ‘possible workaround‘_.

6 Chapter 2. Building Ears Wide Open

CHAPTER 3

Coding style guideline

Todo

it is necessary to adapt this guideline to our purpose. The guideline relate to low level kernel would may not be relevant
in this context.

• check the in-line code and emphasize.

This is a short document describing the preferred coding style for the linux kernel. Coding style is very personal, and
I won’t force my views on anybody, but this is what goes for anything that I have to be able to maintain, and I’d prefer
it for most other things too. Please at least consider the points made here.

First off, I’d suggest printing out a copy of the GNU coding standards, and NOT read it. Burn them, it’s a great
symbolic gesture.

Anyway, here goes:

3.1 Indentation

Tabs are 8 characters, and thus indentations are also 8 characters. There are heretic movements that try to make
indentations 4 (or even 2!) characters deep, and that is akin to trying to define the value of PI to be 3.

Rationale: The whole idea behind indentation is to clearly define where a block of control starts and ends. Especially
when you’ve been looking at your screen for 20 straight hours, you’ll find it a lot easier to see how the indentation
works if you have large indentations.

Now, some people will claim that having 8-character indentations makes the code move too far to the right, and
makes it hard to read on a 80-character terminal screen. The answer to that is that if you need more than 3 levels of
indentation, you’re screwed anyway, and should fix your program.

In short, 8-char indents make things easier to read, and have the added benefit of warning you when you’re nesting
your functions too deep. Heed that warning.

The preferred way to ease multiple indentation levels in a switch statement is to align the “switch” and its subordinate
“case” labels in the same column instead of “double-indenting” the “case” labels. E.g.

switch (suffix) {
case 'G':
case 'g':

mem <<= 30;
break;

case 'M':

7

Ears Wide Open Documentation, Release proto-0.1.0

case 'm':
mem <<= 20;
break;

case 'K':
case 'k':

mem <<= 10;
/* fall through */

default:
break;

}

Don’t put multiple statements on a single line unless you have something to hide

if (condition) do_this;
do_something_everytime;

Don’t put multiple assignments on a single line either. Kernel coding style is super simple. Avoid tricky expressions.

Outside of comments, documentation and except in Kconfig, spaces are never used for indentation, and the above
example is deliberately broken.

Get a decent editor and don’t leave whitespace at the end of lines.

3.2 Breaking long lines and strings

Coding style is all about readability and maintainability using commonly available tools.

The limit on the length of lines is 80 columns and this is a strongly preferred limit.

Statements longer than 80 columns will be broken into sensible chunks, unless exceeding 80 columns significantly
increases readability and does not hide information. Descendants are always substantially shorter than the parent and
are placed substantially to the right. The same applies to function headers with a long argument list. However, never
break user-visible strings such as printk messages, because that breaks the ability to grep for them.

3.3 Placing Braces and Spaces

The other issue that always comes up in C styling is the placement of braces. Unlike the indent size, there are few
technical reasons to choose one placement strategy over the other, but the preferred way, as shown to us by the prophets
Kernighan and Ritchie, is to put the opening brace last on the line, and put the closing brace first, thusly

if (x is true) {
we do y

}

This applies to all non-function statement blocks (if, switch, for, while, do). E.g.

switch (action) {
case KOBJ_ADD:

return "add";
case KOBJ_REMOVE:

return "remove";
case KOBJ_CHANGE:

return "change";
default:

return NULL;
}

8 Chapter 3. Coding style guideline

Ears Wide Open Documentation, Release proto-0.1.0

However, there is one special case, namely functions: they have the opening brace at the beginning of the next line,
thus

int function(int x)
{

body of function
}

Heretic people all over the world have claimed that this inconsistency is ... well ... inconsistent, but all right-thinking
people know that (a) K&R are right and (b) K&R are right. Besides, functions are special anyway (you can’t nest
them in C).

Note that the closing brace is empty on a line of its own, except in the cases where it is followed by a continuation of
the same statement, ie a “while” in a do-statement or an “else” in an if-statement, like this:

do {
body of do-loop

} while (condition);

and

if (x == y) {
..

} else if (x > y) {
...

} else {
....

}

Rationale: K&R.

Also, note that this brace-placement also minimizes the number of empty (or almost empty) lines, without any loss of
readability. Thus, as the supply of new-lines on your screen is not a renewable resource (think 25-line terminal screens
here), you have more empty lines to put comments on.

Do not unnecessarily use braces where a single statement will do.

if (condition)
action();

and

if (condition)
do_this();

else
do_that();

This does not apply if only one branch of a conditional statement is a single statement; in the latter case use braces in
both branches

if (condition) {
do_this();
do_that();

} else {
otherwise();

}

3.3. Placing Braces and Spaces 9

Ears Wide Open Documentation, Release proto-0.1.0

3.3.1 Spaces

Linux kernel style for use of spaces depends (mostly) on function-versus-keyword usage. Use a space after (most)
keywords. The notable exceptions are sizeof, typeof, alignof, and __attribute__, which look somewhat like functions
(and are usually used with parentheses in Linux, although they are not required in the language, as in: “sizeof info”
after “struct fileinfo info;” is declared).

So use a space after these keywords

if, switch, case, for, do, while

but not with sizeof, typeof, alignof, or __attribute__. E.g.,

s = sizeof(struct file);

Do not add spaces around (inside) parenthesized expressions. This example is bad

s = sizeof(struct file);

When declaring pointer data or a function that returns a pointer type, the preferred use of ‘*’ is adjacent to the data
name or function name and not adjacent to the type name. Examples

char *linux_banner;
unsigned long long memparse(char *ptr, char **retptr);
char *match_strdup(substring_t *s);

Use one space around (on each side of) most binary and ternary operators, such as any of these

= + - < > * / % | & ^ <= >= == != ? :

but no space after unary operators

& * + - ~ ! sizeof typeof alignof __attribute__ defined

no space before the postfix increment & decrement unary operators

++ --

no space after the prefix increment & decrement unary operators:

++ --

and no space around the ‘.’ and “->” structure member operators.

Do not leave trailing whitespace at the ends of lines. Some editors with “smart” indentation will insert whitespace at
the beginning of new lines as appropriate, so you can start typing the next line of code right away. However, some
such editors do not remove the whitespace if you end up not putting a line of code there, such as if you leave a blank
line. As a result, you end up with lines containing trailing whitespace.

Git will warn you about patches that introduce trailing whitespace, and can optionally strip the trailing whitespace for
you; however, if applying a series of patches, this may make later patches in the series fail by changing their context
lines.

3.4 Naming

C is a Spartan language, and so should your naming be. Unlike Modula-2 and Pascal programmers, C programmers do
not use cute names like ThisVariableIsATemporaryCounter. A C programmer would call that variable “tmp”, which is
much easier to write, and not the least more difficult to understand.

10 Chapter 3. Coding style guideline

Ears Wide Open Documentation, Release proto-0.1.0

HOWEVER, while mixed-case names are frowned upon, descriptive names for global variables are a must. To call a
global function “foo” is a shooting offense.

GLOBAL variables (to be used only if you _really_ need them) need to have descriptive names, as do global functions.
If you have a function that counts the number of active users, you should call that “count_active_users()” or similar,
you should _not_ call it “cntusr()”.

Encoding the type of a function into the name (so-called Hungarian notation) is brain damaged - the compiler knows
the types anyway and can check those, and it only confuses the programmer. No wonder MicroSoft makes buggy
programs.

LOCAL variable names should be short, and to the point. If you have some random integer loop counter, it should
probably be called “i”. Calling it “loop_counter” is non-productive, if there is no chance of it being mis-understood.
Similarly, “tmp” can be just about any type of variable that is used to hold a temporary value.

If you are afraid to mix up your local variable names, you have another problem, which is called the function-growth-
hormone-imbalance syndrome. See chapter 6 (Functions).

3.5 Typedefs

Please don’t use things like “vps_t”. It’s a _mistake_ to use typedef for structures and pointers. When you see a

vps_t a;

in the source, what does it mean? In contrast, if it says

struct virtual_container *a;

you can actually tell what “a” is.

Lots of people think that typedefs “help readability”. Not so. They are useful only for:

1. totally opaque objects (where the typedef is actively used to _hide_ what the object is).

Example: “pte_t” etc. opaque objects that you can only access using the proper accessor functions.

NOTE! Opaqueness and “accessor functions” are not good in themselves. The reason we have them for things
like pte_t etc. is that there really is absolutely _zero_ portably accessible information there.

2. Clear integer types, where the abstraction _helps_ avoid confusion whether it is “int” or “long”.

u8/u16/u32 are perfectly fine typedefs, although they fit into category (d) better than here.

NOTE! Again - there needs to be a _reason_ for this. If something is “unsigned long”, then there’s no reason to
do

typedef unsigned long myflags_t;

but if there is a clear reason for why it under certain circumstances might be an “unsigned int” and under other
configurations might be “unsigned long”, then by all means go ahead and use a typedef.

3. when you use sparse to literally create a _new_ type for type-checking.

4. New types which are identical to standard C99 types, in certain exceptional circumstances.

Although it would only take a short amount of time for the eyes and brain to become accustomed to the standard
types like ‘uint32_t’, some people object to their use anyway.

Therefore, the Linux-specific ‘u8/u16/u32/u64’ types and their signed equivalents which are identical to standard
types are permitted – although they are not mandatory in new code of your own.

When editing existing code which already uses one or the other set of types, you should conform to the existing
choices in that code.

3.5. Typedefs 11

Ears Wide Open Documentation, Release proto-0.1.0

5. Types safe for use in userspace.

In certain structures which are visible to userspace, we cannot require C99 types and cannot use the ‘u32’ form
above. Thus, we use __u32 and similar types in all structures which are shared with userspace.

Maybe there are other cases too, but the rule should basically be to NEVER EVER use a typedef unless you can clearly
match one of those rules.

In general, a pointer, or a struct that has elements that can reasonably be directly accessed should _never_ be a typedef.

3.6 Functions

Functions should be short and sweet, and do just one thing. They should fit on one or two screenfuls of text (the
ISO/ANSI screen size is 80x24, as we all know), and do one thing and do that well.

The maximum length of a function is inversely proportional to the complexity and indentation level of that function.
So, if you have a conceptually simple function that is just one long (but simple) case-statement, where you have to do
lots of small things for a lot of different cases, it’s OK to have a longer function.

However, if you have a complex function, and you suspect that a less-than-gifted first-year high-school student might
not even understand what the function is all about, you should adhere to the maximum limits all the more closely. Use
helper functions with descriptive names (you can ask the compiler to in-line them if you think it’s performance-critical,
and it will probably do a better job of it than you would have done).

Another measure of the function is the number of local variables. They shouldn’t exceed 5-10, or you’re doing
something wrong. Re-think the function, and split it into smaller pieces. A human brain can generally easily keep
track of about 7 different things, anything more and it gets confused. You know you’re brilliant, but maybe you’d like
to understand what you did 2 weeks from now.

In source files, separate functions with one blank line. If the function is exported, the EXPORT* macro for it should
follow immediately after the closing function brace line. E.g.:

int system_is_up(void)
{

return system_state == SYSTEM_RUNNING;
}
EXPORT_SYMBOL(system_is_up);

In function prototypes, include parameter names with their data types. Although this is not required by the C language,
it is preferred in Linux because it is a simple way to add valuable information for the reader.

3.7 Centralized exiting of functions

Albeit deprecated by some people, the equivalent of the goto statement is used frequently by compilers in form of the
unconditional jump instruction.

The goto statement comes in handy when a function exits from multiple locations and some common work such as
cleanup has to be done. If there is no cleanup needed then just return directly.

Choose label names which say what the goto does or why the goto exists. An example of a good name could be
“out_buffer:” if the goto frees “buffer”. Avoid using GW-BASIC names like “err1:” and “err2:”. Also don’t name
them after the goto location like “err_kmalloc_failed:”

The rationale for using gotos is:

• unconditional statements are easier to understand and follow

• nesting is reduced

12 Chapter 3. Coding style guideline

Ears Wide Open Documentation, Release proto-0.1.0

• errors by not updating individual exit points when making modifications are prevented

• saves the compiler work to optimize redundant code away ;)

int fun(int a)
{

int result = 0;
char *buffer;

buffer = kmalloc(SIZE, GFP_KERNEL);
if (!buffer)

return -ENOMEM;

if (condition1) {
while (loop1) {

...
}
result = 1;
goto out_buffer;

}
...

out_buffer:
kfree(buffer);
return result;

}

A common type of bug to be aware of is “one err bugs” which look like this:

err:
kfree(foo->bar);
kfree(foo);
return ret;

The bug in this code is that on some exit paths “foo” is NULL. Normally the fix for this is to split it up into two error
labels “err_bar:” and “err_foo:”.

3.8 Commenting

Comments are good, but there is also a danger of over-commenting. NEVER try to explain HOW your code works
in a comment: it’s much better to write the code so that the _working_ is obvious, and it’s a waste of time to explain
badly written code.

Generally, you want your comments to tell WHAT your code does, not HOW. Also, try to avoid putting comments
inside a function body: if the function is so complex that you need to separately comment parts of it, you should
probably go back to chapter 6 for a while. You can make small comments to note or warn about something particularly
clever (or ugly), but try to avoid excess. Instead, put the comments at the head of the function, telling people what it
does, and possibly WHY it does it.

When commenting the kernel API functions, please use the kernel-doc format. See the files Documentation/kernel-
doc-nano-HOWTO.txt and scripts/kernel-doc for details.

Linux style for comments is the C89 “/* ... */” style. Don’t use C99-style “// ...” comments.

The preferred style for long (multi-line) comments is:

/*
* This is the preferred style for multi-line

* comments in the Linux kernel source code.

* Please use it consistently.

3.8. Commenting 13

Ears Wide Open Documentation, Release proto-0.1.0

*
* Description: A column of asterisks on the left side,

* with beginning and ending almost-blank lines.

*/

For files in net/ and drivers/net/ the preferred style for long (multi-line) comments is a little different.

/* The preferred comment style for files in net/ and drivers/net

* looks like this.

*
* It is nearly the same as the generally preferred comment style,

* but there is no initial almost-blank line.

*/

It’s also important to comment data, whether they are basic types or derived types. To this end, use just one data
declaration per line (no commas for multiple data declarations). This leaves you room for a small comment on each
item, explaining its use.

3.9 You’ve made a mess of it

That’s OK, we all do. You’ve probably been told by your long-time Unix user helper that “GNU emacs” automatically
formats the C sources for you, and you’ve noticed that yes, it does do that, but the defaults it uses are less than desirable
(in fact, they are worse than random typing - an infinite number of monkeys typing into GNU emacs would never make
a good program).

So, you can either get rid of GNU emacs, or change it to use saner values. To do the latter, you can stick the following
in your .emacs file:

(defun c-lineup-arglist-tabs-only (ignored)
"Line up argument lists by tabs, not spaces"
(let* ((anchor (c-langelem-pos c-syntactic-element))

(column (c-langelem-2nd-pos c-syntactic-element))
(offset (- (1+ column) anchor))
(steps (floor offset c-basic-offset)))

(* (max steps 1)
c-basic-offset)))

(add-hook 'c-mode-common-hook
(lambda ()
;; Add kernel style
(c-add-style
"linux-tabs-only"
'("linux" (c-offsets-alist

(arglist-cont-nonempty
c-lineup-gcc-asm-reg
c-lineup-arglist-tabs-only))))))

(add-hook 'c-mode-hook
(lambda ()
(let ((filename (buffer-file-name)))
;; Enable kernel mode for the appropriate files
(when (and filename

(string-match (expand-file-name "~/src/linux-trees")
filename))

(setq indent-tabs-mode t)
(setq show-trailing-whitespace t)
(c-set-style "linux-tabs-only")))))

14 Chapter 3. Coding style guideline

Ears Wide Open Documentation, Release proto-0.1.0

This will make emacs go better with the kernel coding style for C files below ~/src/linux-trees.

But even if you fail in getting emacs to do sane formatting, not everything is lost: use “indent”.

Now, again, GNU indent has the same brain-dead settings that GNU emacs has, which is why you need to give it a few
command line options. However, that’s not too bad, because even the makers of GNU indent recognize the authority of
K&R (the GNU people aren’t evil, they are just severely misguided in this matter), so you just give indent the options
“-kr -i8” (stands for “K&R, 8 character indents”), or use “scripts/Lindent”, which indents in the latest style.

“indent” has a lot of options, and especially when it comes to comment re-formatting you may want to take a look at
the man page. But remember: “indent” is not a fix for bad programming.

3.10 Kconfig configuration files

For all of the Kconfig* configuration files throughout the source tree, the indentation is somewhat different. Lines
under a “config” definition are indented with one tab, while help text is indented an additional two spaces. Example:

config AUDIT
bool "Auditing support"
depends on NET
help
Enable auditing infrastructure that can be used with another
kernel subsystem, such as SELinux (which requires this for
logging of avc messages output). Does not do system-call
auditing without CONFIG_AUDITSYSCALL.

Seriously dangerous features (such as write support for certain filesystems) should advertise this prominently in their
prompt string:

config ADFS_FS_RW
bool "ADFS write support (DANGEROUS)"
depends on ADFS_FS

...

For full documentation on the configuration files, see the file Documentation/kbuild/kconfig-language.txt.

3.11 Data structures

Data structures that have visibility outside the single-threaded environment they are created and destroyed in should
always have reference counts. In the kernel, garbage collection doesn’t exist (and outside the kernel garbage collection
is slow and inefficient), which means that you absolutely _have_ to reference count all your uses.

Reference counting means that you can avoid locking, and allows multiple users to have access to the data structure in
parallel - and not having to worry about the structure suddenly going away from under them just because they slept or
did something else for a while.

Note that locking is _not_ a replacement for reference counting. Locking is used to keep data structures coherent, while
reference counting is a memory management technique. Usually both are needed, and they are not to be confused with
each other.

Many data structures can indeed have two levels of reference counting, when there are users of different “classes”.
The subclass count counts the number of subclass users, and decrements the global count just once when the subclass
count goes to zero.

Examples of this kind of “multi-level-reference-counting” can be found in memory management (“struct mm_struct”:
mm_users and mm_count), and in filesystem code (“struct super_block”: s_count and s_active).

3.10. Kconfig configuration files 15

Ears Wide Open Documentation, Release proto-0.1.0

Remember: if another thread can find your data structure, and you don’t have a reference count on it, you almost
certainly have a bug.

3.12 Macros, Enums and RTL

Names of macros defining constants and labels in enums are capitalized.

#define CONSTANT 0x12345

Enums are preferred when defining several related constants.

CAPITALIZED macro names are appreciated but macros resembling functions may be named in lower case.

Generally, inline functions are preferable to macros resembling functions.

Macros with multiple statements should be enclosed in a do - while block:

#define macrofun(a, b, c) \
do { \

if (a == 5) \
do_this(b, c); \

} while (0)

Things to avoid when using macros:

1. macros that affect control flow:

#define FOO(x) \
do { \

if (blah(x) < 0) \
return -EBUGGERED; \

} while (0)

is a _very_ bad idea. It looks like a function call but exits the “calling” function; don’t break the internal parsers of
those who will read the code.

2. macros that depend on having a local variable with a magic name:

#define FOO(val) bar(index, val)

might look like a good thing, but it’s confusing as hell when one reads the code and it’s prone to breakage from
seemingly innocent changes.

3) macros with arguments that are used as l-values: FOO(x) = y; will bite you if somebody e.g. turns FOO into an
inline function.

4) forgetting about precedence: macros defining constants using expressions must enclose the expression in parenthe-
ses. Beware of similar issues with macros using parameters.

#define CONSTANT 0x4000
#define CONSTEXP (CONSTANT | 3)

5) namespace collisions when defining local variables in macros resembling functions:

#define FOO(x) \
({ \

typeof(x) ret; \
ret = calc_ret(x); \
(ret); \

})

16 Chapter 3. Coding style guideline

Ears Wide Open Documentation, Release proto-0.1.0

ret is a common name for a local variable - __foo_ret is less likely to collide with an existing variable.

The cpp manual deals with macros exhaustively. The gcc internals manual also covers RTL which is used frequently
with assembly language in the kernel.

3.13 Printing kernel messages

Kernel developers like to be seen as literate. Do mind the spelling of kernel messages to make a good impression.
Do not use crippled words like “dont”; use “do not” or “don’t” instead. Make the messages concise, clear, and
unambiguous.

Kernel messages do not have to be terminated with a period.

Printing numbers in parentheses (%d) adds no value and should be avoided.

There are a number of driver model diagnostic macros in <linux/device.h> which you should use to make sure mes-
sages are matched to the right device and driver, and are tagged with the right level: dev_err(), dev_warn(), dev_info(),
and so forth. For messages that aren’t associated with a particular device, <linux/printk.h> defines pr_notice(),
pr_info(), pr_warn(), pr_err(), etc.

Coming up with good debugging messages can be quite a challenge; and once you have them, they can be a huge help
for remote troubleshooting. However debug message printing is handled differently than printing other non-debug
messages. While the other pr_XXX() functions print unconditionally, pr_debug() does not; it is compiled out by
default, unless either DEBUG is defined or CONFIG_DYNAMIC_DEBUG is set. That is true for dev_dbg() also, and
a related convention uses VERBOSE_DEBUG to add dev_vdbg() messages to the ones already enabled by DEBUG.

Many subsystems have Kconfig debug options to turn on -DDEBUG in the corresponding Makefile; in other cases
specific files #define DEBUG. And when a debug message should be unconditionally printed, such as if it is already
inside a debug-related #ifdef section, printk(KERN_DEBUG ...) can be used.

3.14 Allocating memory

The kernel provides the following general purpose memory allocators: kmalloc(), kzalloc(), kmalloc_array(), kcal-
loc(), vmalloc(), and vzalloc(). Please refer to the API documentation for further information about them.

The preferred form for passing a size of a struct is the following:

p = kmalloc(sizeof(*p), ...);

The alternative form where struct name is spelled out hurts readability and introduces an opportunity for a bug when
the pointer variable type is changed but the corresponding sizeof that is passed to a memory allocator is not.

Casting the return value which is a void pointer is redundant. The conversion from void pointer to any other pointer
type is guaranteed by the C programming language.

The preferred form for allocating an array is the following:

p = kmalloc_array(n, sizeof(...), ...);

The preferred form for allocating a zeroed array is the following:

p = kcalloc(n, sizeof(...), ...);

Both forms check for overflow on the allocation size n * sizeof(...), and return NULL if that occurred.

3.13. Printing kernel messages 17

Ears Wide Open Documentation, Release proto-0.1.0

3.15 The inline disease

There appears to be a common misperception that gcc has a magic “make me faster” speedup option called “inline”.
While the use of inlines can be appropriate (for example as a means of replacing macros, see Chapter 12), it very
often is not. Abundant use of the inline keyword leads to a much bigger kernel, which in turn slows the system as a
whole down, due to a bigger icache footprint for the CPU and simply because there is less memory available for the
pagecache. Just think about it; a pagecache miss causes a disk seek, which easily takes 5 milliseconds. There are a
LOT of cpu cycles that can go into these 5 milliseconds.

A reasonable rule of thumb is to not put inline at functions that have more than 3 lines of code in them. An exception
to this rule are the cases where a parameter is known to be a compiletime constant, and as a result of this constantness
you know the compiler will be able to optimize most of your function away at compile time. For a good example of
this later case, see the kmalloc() inline function.

Often people argue that adding inline to functions that are static and used only once is always a win since there is no
space tradeoff. While this is technically correct, gcc is capable of inlining these automatically without help, and the
maintenance issue of removing the inline when a second user appears outweighs the potential value of the hint that
tells gcc to do something it would have done anyway.

3.16 Function return values and names

Functions can return values of many different kinds, and one of the most common is a value indicating whether the
function succeeded or failed. Such a value can be represented as an error-code integer (-Exxx = failure, 0 = success)
or a “succeeded” boolean (0 = failure, non-zero = success).

Mixing up these two sorts of representations is a fertile source of difficult-to-find bugs. If the C language included a
strong distinction between integers and booleans then the compiler would find these mistakes for us... but it doesn’t.
To help prevent such bugs, always follow this convention:

If the name of a function is an action or an imperative command, the function should return an error-code
integer. If the name is a predicate, the function should return a “succeeded” boolean.

For example, “add work” is a command, and the add_work() function returns 0 for success or -EBUSY for failure.
In the same way, “PCI device present” is a predicate, and the pci_dev_present() function returns 1 if it succeeds in
finding a matching device or 0 if it doesn’t.

All EXPORTed functions must respect this convention, and so should all public functions. Private (static) functions
need not, but it is recommended that they do.

Functions whose return value is the actual result of a computation, rather than an indication of whether the computation
succeeded, are not subject to this rule. Generally they indicate failure by returning some out-of-range result. Typical
examples would be functions that return pointers; they use NULL or the ERR_PTR mechanism to report failure.

3.17 Don’t re-invent the kernel macros

The header file include/linux/kernel.h contains a number of macros that you should use, rather than explicitly coding
some variant of them yourself. For example, if you need to calculate the length of an array, take advantage of the
macro

#define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0]))

Similarly, if you need to calculate the size of some structure member, use

18 Chapter 3. Coding style guideline

Ears Wide Open Documentation, Release proto-0.1.0

#define FIELD_SIZEOF(t, f) (sizeof(((t*)0)->f))

There are also min() and max() macros that do strict type checking if you need them. Feel free to peruse that header
file to see what else is already defined that you shouldn’t reproduce in your code.

3.18 Editor modelines and other cruft

Some editors can interpret configuration information embedded in source files, indicated with special markers. For
example, emacs interprets lines marked like this:

-*- mode: c -*-

Or like this:

/*
Local Variables:
compile-command: "gcc -DMAGIC_DEBUG_FLAG foo.c"
End:

*/

Vim interprets markers that look like this:

/* vim:set sw=8 noet */

Do not include any of these in source files. People have their own personal editor configurations, and your source files
should not override them. This includes markers for indentation and mode configuration. People may use their own
custom mode, or may have some other magic method for making indentation work correctly.

3.19 Inline assembly

In architecture-specific code, you may need to use inline assembly to interface with CPU or platform functionality.
Don’t hesitate to do so when necessary. However, don’t use inline assembly gratuitously when C can do the job. You
can and should poke hardware from C when possible.

Consider writing simple helper functions that wrap common bits of inline assembly, rather than repeatedly writing
them with slight variations. Remember that inline assembly can use C parameters.

Large, non-trivial assembly functions should go in .S files, with corresponding C prototypes defined in C header files.
The C prototypes for assembly functions should use “asmlinkage”.

You may need to mark your asm statement as volatile, to prevent GCC from removing it if GCC doesn’t notice any
side effects. You don’t always need to do so, though, and doing so unnecessarily can limit optimization.

When writing a single inline assembly statement containing multiple instructions, put each instruction on a separate
line in a separate quoted string, and end each string except the last with nt to properly indent the next instruction in the
assembly output:

asm ("magic %reg1, #42\n\t"
"more_magic %reg2, %reg3"
: /* outputs */ : /* inputs */ : /* clobbers */);

3.18. Editor modelines and other cruft 19

Ears Wide Open Documentation, Release proto-0.1.0

3.20 Conditional Compilation

Wherever possible, don’t use preprocessor conditionals (#if, #ifdef) in .c files; doing so makes code harder to read
and logic harder to follow. Instead, use such conditionals in a header file defining functions for use in those .c files,
providing no-op stub versions in the #else case, and then call those functions unconditionally from .c files. The
compiler will avoid generating any code for the stub calls, producing identical results, but the logic will remain easy
to follow.

Prefer to compile out entire functions, rather than portions of functions or portions of expressions. Rather than putting
an ifdef in an expression, factor out part or all of the expression into a separate helper function and apply the conditional
to that function.

If you have a function or variable which may potentially go unused in a particular configuration, and the compiler
would warn about its definition going unused, mark the definition as __maybe_unused rather than wrapping it in a
preprocessor conditional. (However, if a function or variable always goes unused, delete it.)

Within code, where possible, use the IS_ENABLED macro to convert a Kconfig symbol into a C boolean expression,
and use it in a normal C conditional:

if (IS_ENABLED(CONFIG_SOMETHING)) {
...

}

The compiler will constant-fold the conditional away, and include or exclude the block of code just as with an #ifdef,
so this will not add any runtime overhead. However, this approach still allows the C compiler to see the code inside
the block, and check it for correctness (syntax, types, symbol references, etc). Thus, you still have to use an #ifdef if
the code inside the block references symbols that will not exist if the condition is not met.

At the end of any non-trivial #if or #ifdef block (more than a few lines), place a comment after the #endif on the same
line, noting the conditional expression used. For instance:

#ifdef CONFIG_SOMETHING
...
#endif /* CONFIG_SOMETHING */

3.21 Appendix I: References

The C Programming Language, Second Edition by Brian W. Kernighan and Dennis M. Ritchie. Prentice Hall, Inc.,
1988. ISBN 0-13-110362-8 (paperback), 0-13-110370-9 (hardback).

The Practice of Programming by Brian W. Kernighan and Rob Pike. Addison-Wesley, Inc., 1999. ISBN 0-201-61586-
X.

GNU manuals - where in compliance with K&R and this text - for cpp, gcc, gcc internals and indent, all available from
http://www.gnu.org/manual/

WG14 is the international standardization working group for the programming language C, URL: http://www.open-
std.org/JTC1/SC22/WG14/

Kernel CodingStyle, by greg@kroah.com at OLS 2002: http://www.kroah.com/linux/talks/ols_2002_kernel_codingstyle_talk/html/

20 Chapter 3. Coding style guideline

http://www.gnu.org/manual/
http://www.open-std.org/JTC1/SC22/WG14/
http://www.open-std.org/JTC1/SC22/WG14/
mailto:greg@kroah.com
http://www.kroah.com/linux/talks/ols_2002_kernel_codingstyle_talk/html/

CHAPTER 4

Glossary

IDE Integrated Development Environment.

21

Ears Wide Open Documentation, Release proto-0.1.0

22 Chapter 4. Glossary

CHAPTER 5

Indices and tables

• genindex

• modindex

• search

23

Ears Wide Open Documentation, Release proto-0.1.0

24 Chapter 5. Indices and tables

Index

I
IDE, 21

25

	Developer information
	Communication
	Getting started

	Building Ears Wide Open
	Overview for setting up a build environment
	Build the system
	Library versions
	Debugging

	Coding style guideline
	Indentation
	Breaking long lines and strings
	Placing Braces and Spaces
	Naming
	Typedefs
	Functions
	Centralized exiting of functions
	Commenting
	You've made a mess of it
	Kconfig configuration files
	Data structures
	Macros, Enums and RTL
	Printing kernel messages
	Allocating memory
	The inline disease
	Function return values and names
	Don't re-invent the kernel macros
	Editor modelines and other cruft
	Inline assembly
	Conditional Compilation
	Appendix I: References

	Glossary
	Indices and tables

